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Abstract

Many machine learning approaches train networks with
input from large datasets to reach high task performance.
Collected datasets, such as Berkeley Deep Drive Video
(BDD-V) for autonomous driving, contain a large variety
of scenes and hence features. However, depending on the
task, subsets, containing certain features more densely, sup-
port training better than others. For example, training net-
works on tasks such as image segmentation, bounding box
detection or tracking requires an ample amount of objects in
the input data. When training a network to perform optical
�ow estimation from �rst-person video, over-proportionally
many straight driving scenes in the training data may lower
generalization to turns. Even though some scenes of the
BDD-V dataset are labeled with scene, weather or time of
day information, these may be too coarse to �lter the dataset
best for a particular training task. Furthermore, even de�n-
ing an exhaustive list of good label-types is complicated as
it requires choosing the most relevant concepts of the natu-
ral world for a task. Alternatively, we investigate how to use
examples of desired data to retrieve more similar data from
a large-scale dataset. Following the paradigm of ”I know
it when I see it”, we present a deep learning approach to
use driving examples for retrieving similar scenes from the
BDD-V dataset. Our method leverages only automatically
collected labels. We show how we can reliably vary time of
the day or objects in our query examples and retrieve near-
est neighbors from the dataset. Using this method, already
collected data can be �ltered to remove bias from a dataset,
removing scenes regarded too redundant to train on.

1. Introduction

Neural networks need to capture visual, temporal and ac-
tion aspects of our world to perform well on autonomous

driving tasks. To that end, large datasets were created with
many examples of expert driving to provide real world refer-
ences. The BDD-V dataset consists of a very large amount
of videos and automatically recorded kinematic informa-
tion, crowd-sourced from dashcams behind the windshield
of many drivers on the West- and East-coast of the United
States. However, unlike databases as ImageNet, where im-
ages are labeled with their depicting object categories, the
BDD data provides similarly rich annotations only for a
subset. This motivates a question in driving dataset cura-
tion: How to search through unlabeled data for speci�c
scenes?In the following, we answer a slightly modi�ed
question: Given exemplary scenes that represent desired
features, how to retrieve similar data from a very large,
unannotated dataset?

We compare two variations of example encoding to
query for similar data: Single images and sequences of
image-action pairs (which we refer to asscenes). While
the former concept is similar to common image retrieval ap-
proaches, the latter includes past actions and camera images
and can be thought of as observing bursts of driving behav-
ior within a second.

The retrieval approach is based on work from [4] for
unsupervised image classi�cation. In supervised classi�-
cation, extensive human labeling of data is necessary. How-
ever, labeling similar scenes requires the same understand-
ing of similarity among human labelers. With our approach
we make a network come up with a suitable concept of
similarity to rank �rst-person driving query instances. As
shown, retrieved nearest neighbors for query images are in-
deed similar according to concepts such as the number of
objects, street architecture or time of the day. In Figures 1,
2, and 3, we qualitatively show image similarity by compar-
ing queries and retrievals for driving scenes, showing exem-
plary scene con�gurations.
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Figure 1: Retrievals of the network for a single query image. In rowa), sunny street corners are retrieved even though the
street layout is more varied as when using scenes. Inb) pedestrian crossings with many cars in the scene are reliably found.
Also, the time of the day and weather �ts in between the query and retrieval as shown inc) andd)

2. Related Work

Deep metric learning approaches have been used for
recognition [3], re-identi�cation and video categorization
tasks in the past. Joonseok et al. [7] are related to our ap-
proach as they embed video features into a neighbourhood
to preserve similarity.

A difference to our method is their metric, which re-
gards videos similar if they were watched in the same ses-
sion from the same user on YouTube. Other metric learning
techniques process pairs or triplets to preserve similarities
across samples semi-supervised. For example, parallel neu-
ral processing streams with shared weights evaluate pairs,
and a �nal contrastive loss is either pushing pairs together
or pulling them apart based on shared labels. This matches
pairs from the same class but with different domain features
(e.g., different lighting conditions or viewpoints), as shown
by Bell and Bala [1].

Another similar technique relies on surrogate patch sam-
pling for supervision, where the network treats the patches
as surrogate classes to learn features [2].

Wu et al. [5] showed how an unsupervised instance-
based classi�er can perform object classi�cation tasks.
Their learned feature embedding maps novel images locally
close to training images with the same label. They also
leveraged some parametric calculations to infer ef�ciently
enough for real-time computation.

3. Method

We train and compare networks to map images and
image-action sequences (scenes) to nearest neighbors in the
dataset. The results are hard to quantify given the unlabeled

data, so we evaluate our retrieval approach by inspecting
and showing many query-retrieval examples by hand.

3.1. Data

Our used BDD video-dataset [8] contains more than
1.8TB of �rst-person driving scenes in urban areas. Video
sequences are labeled with accelerations, angular velocities
and GPS information. These were processed by [6] into ac-
tion vectors for the task of action prediction. Also, for 100k
non-consecutive frames from different videos, images were
annotated with labels such as weather, scene and time of
day. A subset of 10k images contains further labels such
as image segmentations and objects. We do not use any
of these labels during training. We used the BDD 100k
dataset for single-image queries and the full video dataset
for image-action-sequences as queries. We adopt the action
encoding of [6], which encodes the behavior of the vehicle.

3.2. Driving Scene De�nition

Our scenes are de�ned as a number of past and future
frames, relative to a time pointt. Similar to Xu et al. [6], we
pre-process BDD driving videos into approximately 40 sec-
ond long chunks. We parse those in a sliding window fash-
ion with window-size of 6 sampled frames, without overlap.
To reduce redundant data and action correlation, wehop
with 4-frame spacing in between consecutive frames. Driv-
ing scenes (s) are de�ned as a numberN = n � 2; n 2 N of
imagesx i and action vectorsai . Half of the actions lead up
to the current pointt in time:

sj := ( x i ; ai ); j 2 f 0 : : :
M
N

g

i 2 f t � ( N
2 � 1); t � ( N

2 � 2); : : : ; t; : : : ; t + ( N
2 � 1); t + ( N

2 )g
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Figure 2: Retrievals of the network for visual-action scenes.a) Instances of overhead bridges are retrieved from the training
set using query instances from the test set.b) Scenes with strong sunlight, creating glare effects, dominate the retrievals.c)
Pedestrian crossings are retrieved at similar perceived angles and similar ind) at night.

WhereM is the amount of samples retrieved from our
sliding window sampling.

We train only on the past part of the a scenesp
j :=

(x i ; ai ); i 2 f t � ( N
2 � 1); : : : ; tg. During training, we ob-

serve the difference of actions of the query and the retrievals
to monitor the training status.

3.3. Neighborhood Metric Learning

In the work of [4], image features are stored in a mem-
ory bank. From there, cosine distances between features
on this high-dimensional sphere are computed ef�ciently to
measure similarity. Query images (e.g.,lions) are mapped
to visually similar instances of related or same classes (e.g.,
big cats).

Similarly, we adopted this approach to train on the BDD
100k dataset of individual driving images. Furthermore, we
extended the approach to work with our de�ned scenes (i.e.,
sequences of image-action pairs) on BDD-V. During train-
ing, to map every sample to its own ID, the network has
to derive �lters matching useful discriminatory features in
the input space. This creates a network which maps sam-
ples into local neighborhoods with similar visual-action fea-
tures, both spatially and temporally. An example of similar-
ity would be all scenes driving on a straight road at night or
on a highway in broad daylight.

Using a Resnet18 architecture on scenessp
j , we perform

instance-based learning for every sample in the our training
dataset (i.e., the network is trained to correctly predict the
numerical sample ID of inputsp

j , according to a �xed enu-
meration). We use the same 128 dimensional feature vector
and perform non-parametric Softmax classi�cation as de-
scribed in [5].

In order to match the standard input size of ResNet mod-
els, the input video frames within our scenes are resized to
224 � 224. For validation, we parse query scenes from a
validation set and compare the retrieved top-K scenes from
the training set. Due to our lack of ImageNet-like labels, we
compare the ground truth future actions of all test scenes
to the future action labels of the retrieved top-K training
scenes. That way, we keep track of the best epoch, with re-
spect to minimizing the difference of future actions. This in-
dicator allows us to see convergence along both dimensions,
action and visual. It improves training for visual similarity
as actions and visual information during driving are heavily
correlated. We also chose action labels as our basic per-
formance metric because they are automatically generated
while driving and allow us to avoid relying on any manu-
ally generated label. Correlation of future actions in scenes
shows how future scene progression is similar. Since dur-
ing driving, visual elements, e.g. a traf�c light, a pedestrian
crossing or an obstacle, determines the course of the future
scene we see future action correlation as an indication of
how the network learned to detect and map these concepts.

Actions in our approach are action probability vectors,
which are calculated like in [6] from ground truth speed and
course information at each time point. We have chosen the
same possible actions,go straight, stop or slow, turn left
or turn right .

Action probability vectors are concatenated with the sec-
ond layer output of the Resnet-backbone, after the vectors
are expanded to full output feature maps with a size of 28
� 28. This fusion adds only about 10K parameters to the
model and overall, the backbone ResNet18 model, with ac-
tion fusion, has about 11M parameters.
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Figure 3: Further retrieval instances from the visual-action network.a) shows a combination ofcarswith illuminatedbrake
lights, in the earlyafternoon. Some of these conditions can change independently such as inb), where illuminated brake
lights are retrieved at night and inc) where the re�ection of the car paint is visually more salient than the weak taillights. In
d) the same crossing, with the same sign of an American casual dining restaurant is retrieved several times. From the amount
of cars in the scene it can be observed that retrievals come from a different point in time than the query but are most likely
from the same video clip as an emergency vehicle is leaving the scene.

4. Results and Conclusion

The single-image network retrieves images, similar in
time of the day, weather and matching in many objects, as
can be seen in Figure 1. Nevertheless, some details such as
pedestrian crossings, angle to the street or colors of head-
or taillights do not match. Since single images are used for
training and inference, no temporal information is available.

However, the information contained in a sequence of im-
ages can help separate features such as turns. When using
a sequence of image-action pairs as input we see matching
pedestrian crossings even at the right angle (�gure 2) and in
�gure 3 it is possible to distinguish in between illuminated
brake and tail lights.

In summary we show how our approach can query a large
scale driving dataset for data, similar to a query sample.
Fine grained control over the content of the retrieval is pos-
sible, without de�ned labels, by choosing a �tting query.
This can be used to �lter datasets in order to create training
curriculums, better suited to a particular machine learning
task.
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