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1. Introduction

Traditional methods of 2D/3D image data collection and
ground-truth labeling have evident limitations. i) High-
quality ground truths are hard to obtain, as depth and sur-
face normal obtained from sensors are always noisy. ii) It
is impossible to label certain ground truth information, e.g.,
3D objects sizes in 2D images. iii) Manual labeling of mas-
sive ground-truth is tedious and error-prone even if possible.
To provide training data for modern machine learning al-
gorithms, an approach to generate large-scale, high-quality
data with the perfect per-pixel ground truth is in need.

In this paper1, we propose an algorithm to automatically
generate a large-scale 3D indoor scene dataset, from which
we can render 2D images with pixel-wise ground-truth of
the surface normal, depth, and segmentation, etc. The pro-
posed algorithm is useful for tasks including but not lim-
ited to: i) learning and inference for various computer vi-
sion tasks; ii) 3D content generation for 3D modeling and
games; iii) 3D reconstruction and robot mappings prob-
lems; iv) benchmarking of both low-level and high-level
task-planning problems in robotics.

Synthesizing indoor scenes is a non-trivial task. It is of-
ten difficult to properly model either the relations between
furniture of a functional group, or the relations between the
supported objects and the supporting furniture. Specifically,
we argue there are four major difficulties. (i) In a functional
group such as a dining set, the number of pieces may vary.
(ii) Even if we only consider pair-wise relations, there is
already a quadratic number of object-object relations. (iii)
What makes it worse is that most object-object relations are
not obviously meaningful. For example, it is unnecessary
to model the relation between a pen and a monitor, even
though they are both placed on a desk. (iv) Due to the previ-
ous difficulties, an excessive number of constraints are gen-
erated. Many of the constraints contain loops, making the
final layout hard to sample and optimize.

To address these challenges, we propose a human-centric
approach to model indoor scene layout. It integrates human
activities and functional grouping/supporting relations as il-

1Our full paper [3] appears at CVPR 2018.

Figure 1: An example of synthesized indoor scene (bed-
room) with affordance heatmap. The joint sampling of a
scene is achieved by alternative sampling of humans and
objects according to the joint probability distribution.

lustrated in Figure 1. This method not only captures the hu-
man context but also simplifies the scene structure. Specifi-
cally, we use a probabilistic grammar model for images and
scenes [6] – an attributed spatial And-Or graph (S-AOG),
including vertical hierarchy and horizontal contextual rela-
tions. The contextual relations encode functional grouping
relations and supporting relations modeled by object affor-
dances [1]. For each object, we learn the affordance distri-
bution, i.e., an object-human relation, so that a human can
be sampled based on that object. Besides static object af-
fordance, we also consider dynamic human activities in a
scene, constraining the layout by planning trajectories from
one piece of furniture to another.

This paper makes three major contributions. (i) We
jointly model objects, affordances, and activity planning
for indoor scene configurations. (ii) We provide a general
learning and sampling framework for indoor scene model-
ing. (iii) We demonstrate the effectiveness of this structured
joint sampling by extensive comparative experiments.

2. Representation of Indoor Scenes

We use an attributed S-AOG [6] to represent an indoor
scene. An attributed S-AOG is a probabilistic grammar
model with attributes on the terminal nodes. It combines i) a
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probabilistic context free grammar (PCFG), and ii) contex-
tual relations defined on an Markov Random Field (MRF),
i.e., the horizontal links among the nodes. The PCFG repre-
sents the hierarchical decomposition from scenes (top level)
to objects (bottom level) by a set of terminal and non-
terminal nodes, whereas contextual relations encode the
spatial and functional relations through horizontal links. We
refer the readers to our full paper [3] for more details.

Formally, an S-AOG is defined as a 5-tuple: G=
hS, V,R, P,Ei, where we use notations S the root node of
the scene grammar, V the vertex set, R the production rules,
P the probability model defined on the attributed S-AOG,
and E the contextual relations represented as horizontal
links between nodes in the same layer. Cliques formed in
the terminal layer can be divided into different types and
thus have different potential functions.

A hierarchical parse tree pt is an instantiation of the S-
AOG by selecting a child node for the Or-nodes as well as
determining the state of each child node for the Set-nodes.
A parse graph pg consists of a parse tree pt and a number
of contextual relations E on the parse tree: pg=(pt, Ept).
Figure 2 illustrates a simple example of a parse graph and
four types of cliques formed in the terminal layer.

3. Probabilistic Formulation of S-AOG

A scene configuration is represented by a parse graph pg,
including objects in the scene and associated attributes. The
prior probability of pg generated by an S-AOG parameter-
ized by ⇥ is formulated as a Gibbs distribution:

p(pg|⇥)=
1
Z

exp{�E(pg|⇥)}= 1
Z

exp{�E(pt|⇥)�E(Ept|⇥)},

where E(pg|⇥) is the energy function of a parse graph,
E(pt|⇥) is the energy function of a parse tree, and E(Ept|⇥)
is the energy term of the contextual relations.

E(pt|⇥) can be further decomposed into the energy func-
tions of different types of non-terminal nodes, and the en-
ergy functions of internal attributes of both regular and ad-
dress terminal nodes:
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where the choice of the child node of an Or-node v 2V Or

and the child branch of a Set-node v 2V Set follow different
multinomial distributions. Since the And-nodes are deter-
ministically expanded, we do not have an energy term for
the And-nodes here. The internal attributes Ain (size) of
terminal nodes follows a non-parametric probability distri-
bution learned by kernel density estimation.

E(Ept|⇥) combines the potentials of the four types of
cliques formed in the terminal layer, integrating human at-
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Figure 2: (a) A simplified example of a parse graph of a bed-
room. The terminal nodes of the parse graph form an MRF
in the terminal layer. Cliques are formed by the contextual
relations projected to the terminal layer. Examples of the
four types of cliques are shown in (b)-(e), representing four
different types of contextual relations.

tributes and external attributes of regular terminal nodes:

p(Ept|⇥)=
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where �f (c) is defined on relations between furniture (Fig-
ure 2(b)), �o(c) is defined on relations between a supported
object and the supporting furniture (Figure 2(c)), �g(c) is
defined on functional grouping relations between furniture
(Figure 2(d)), and �r(c) is defined on relations between the
room and furniture (Figure 2(e)).

4. Learning S-AOG

We use the SUNCG dataset [4] as training data. It con-
tains over 45K different scenes with manually created re-
alistic room and furniture layouts. We collect the statis-



Table 1: Human subjects’ ratings (1-5) of the sampled layouts based on functionality (top) and naturalness (bottom)
Method Bathroom Bedroom Dining Room Garage Guest Room Gym Kitchen Living Room Office Storage
no-context 1.12 ± 0.33 1.25 ± 0.43 1.38 ± 0.48 1.75 ± 0.66 1.50 ± 0.50 3.75 ± 0.97 2.38 ± 0.48 1.50 ± 0.87 1.62 ± 0.48 1.75 ± 0.43
object 3.12 ± 0.60 3.62 ± 1.22 2.50 ± 0.71 3.50 ± 0.71 2.25 ± 0.97 3.62 ± 0.70 3.62 ± 0.70 3.12 ± 0.78 1.62 ± 0.48 4.00 ± 0.71
Yu et al. [5] 3.61 ± 0.52 4.15 ± 0.25 3.15 ± 0.40 3.59 ± 0.51 2.58 ± 0.31 2.03 ± 0.56 3.91 ± 0.98 4.62 ± 0.21 3.32 ± 0.81 2.58 ± 0.64
ours 4.58 ± 0.86 4.67 ± 0.90 3.33 ± 0.90 3.96 ± 0.79 3.25 ± 1.36 4.04 ± 0.79 4.21 ± 0.87 4.58 ± 0.86 3.67 ± 0.75 4.79 ± 0.58
no-context 1.00 ± 0.00 1.00 ± 0.00 1.12 ± 0.33 1.38 ± 0.70 1.12 ± 0.33 1.62 ± 0.86 1.00 ± 0.00 1.25 ± 0.43 1.12 ± 0.33 1.00 ± 0.00
object 2.88 ± 0.78 3.12 ± 1.17 2.38 ± 0.86 3.00 ± 0.71 2.50 ± 0.50 3.38 ± 0.86 3.25 ± 0.66 2.50 ± 0.50 1.25 ± 0.43 3.75 ± 0.66
Yu et al. [5] 4.00 ± 0.52 3.85 ± 0.92 3.27 ± 1.01 2.99 ± 0.25 3.52 ± 0.93 2.14 ± 0.63 3.89 ± 0.90 3.31 ± 0.29 2.77 ± 0.67 2.96 ± 0.41
ours 4.21 ± 0.71 4.25 ± 0.66 3.08 ± 0.70 3.71 ± 0.68 3.83 ± 0.80 4.17 ± 0.75 4.38 ± 0.56 3.42 ± 0.70 3.25 ± 0.72 4.54 ± 0.71

Table 2: Classification results on segmentation maps of syn-
thesized scenes using different methods vs. SUNCG.

Method Yu et al. [5] SUNCG Perturbed Ours
Accuracy(%) # 87.49 63.69 76.18

(a) SUNCG Perturbed (b) Yu et al. [5] (c) Ours

Figure 3: Top-view segmentation maps for classification.

Figure 4: Top: previous methods [5] only re-arranges a
given input scene with a fixed room size and a predefined
set of objects. Bottom: our method samples a large variety
of scenes.

tics of room types, room sizes, furniture occurrences, furni-
ture sizes, relative distances, orientations between furniture
and walls, furniture affordance, grouping occurrences, and
supporting relations. The parameters ⇥ of the probability
model P can be learned by maximum likelihood estimation
(MLE). Details can be find in our full paper [3].

5. Synthesizing Scene ConÞgurations

Synthesizing scene configurations is accomplished by
sampling a parse graph pg from the prior probability
p(pg|⇥) defined by the S-AOG. We utilize a Markov chain
Monte Carlo (MCMC) sampler to draw a typical state in
the distribution. We design two simple types of Markov
chain dynamics which are used at random with probabili-
ties qi, i=1, 2 to make proposal moves: i) dynamics q1 to
translate objects, and ii) dynamics q2 to rotate objects.

6. Experiments

Here we present two experiments results. For more ex-
periments and details please see our full paper [3]. i) Visual
similarity to manually constructed scenes, ii) functionali-
ties and naturalness of the synthesized scenes. The first ex-
periment compares our method with a state-of-the-art room
arrangement method; the second one is an ablation study.
Overall, the experiments show that our algorithm can ro-
bustly sample a large variety of realistic scenes that exhibits
naturalness and functionality.
Layout ClassiÞcation. To quantitatively evaluate the vi-
sual realism, we trained a classifier on the top-view seg-
mentation maps of synthesized scenes and SUNCG scenes.
Specifically, we train a ResNet-152 [2] to classify top view
layout segmentation maps (synthesized vs. SUNCG). Ex-
amples of top-view segmentation maps are shown in Fig-
ure 3. The reason to use segmentation maps is that we
want to evaluate the room layout excluding rendering fac-
tors such as object materials. We use two methods for
comparison: i) a state-of-the-art furniture arrangement op-
timization method proposed by Yu et al. [5], and ii) slight
perturbation of SUNCG scenes by adding small Gaussian
noise (e.g. µ=0,�=0.1) to the layout. The room arrange-
ment algorithm proposed by [5] takes one pre-fixed input
room and re-organizes the room. 1500 scenes are randomly
selected for each method and SUNCG: 800 for training, 200
for validation, and 500 for testing. As shown in Table 2, the
classifier successfully distinguishes Yu et al. vs. SUNCG
with an accuracy of 87.49%. Our method achieves a bet-
ter performance of 76.18%, exhibiting a higher realism and
larger variety. This result indicates our method is much
more visually similar to real scenes than the comparative
scene optimization method. Qualitative comparisons of Yu
et al. and our method are shown in Figure 4.
Functionality and naturalness. Three methods are used
for comparison: (i) direct sampling of rooms according to
the statistics of furniture occurrence without adding contex-
tual relation, (ii) an approach that only models object-wise
relations by removing the human constraints in our model,
and (iii) the algorithm proposed by Yu et al. [5]. We showed
the sampled layouts using three methods to 4 human sub-
jects. Subjects were told the room category in advance, and
instructed to rate given scene layouts without knowing the



(a) bathroom (b) bedroom (c) dining room (d) garage (e) guest room

(f) gym (g) kitchen (h) living room (i) office (j) storage

Figure 5: Examples of scenes in ten different categories. Top: top-view. Middle: a side-view. Bottom: affordance heatmap.

method used to generate the layouts. For each of the 10
room categories, 24 samples were randomly selected using
our method and [5], and 8 samples were selected using
both the object-wise modeling method and the random gen-
eration. The subjects evaluated the layouts based on two
criteria: (i) functionality of the rooms, e.g., can the “bed-
room” satisfies a human’s needs for daily life; and (ii) the
naturalness and realism of the layout. Scales of responses
range from 1 to 5, with 5 indicating perfect functionalilty
or perfect naturalness and realism. The mean ratings and
the standard deviations are summarized in Table 1. Our
approach outperforms the three methods in both criteria,
demonstrating the ability to sample a functionally reason-
able and realistic scene layout. More qualitative results are
shown in Figure 5.

Conclusion We propose a novel general framework for
human-centric indoor scene synthesis by sampling from a
spatial And-Or graph. The experimental results demon-
strate the effectiveness of our approach over a large variety

of scenes based on different criteria. We hope the synthe-
sized data can contribute to the broad AI community.
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